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Abstract

In this paper we study the space of natural images locally. We
apply the techniques of computational algebraic topology to the
space of 3x3 and 5x5 high-contrast patches and show that in both
cases, the subspace of linear and quadratic gradient patches, which
forms a dense subset inside the space of all high-contrast patches,
possesses an interesting topological filtration and is itself topolog-
ically equivalent to the Klein bottle.

Keywords : topology; natural images; manifold; filtration; Klein
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Introduction

Natural image statistics has attracted much of interest in the recent
years. There have been many successful attempts to approach this sub-
ject by researchers from areas as diverse as neuroscience and physiology
on the one hand and computer vision on the other. In this paper we
take up a “local” approach. That is, instead of looking at an image
as a whole we analyze the structure of its high-contrast regions (pixel
patches). While most of the work done in this direction has concentrated
on statistical properties of such “local” regions, we are interested in the
topology of this space or, more precisely, the topology of the space of n
by n high-contrast pixel patches with sufficiently small n. The question
about the existence of a manifold structure within a space of patches was
raised in [10], where the authors study the global statistics of the space
of 3 by 3 patches.
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There are many advantages to analyzing a space of natural images
locally. First, this greatly reduces the dimensionality of the problem.
While the original image taken by the digital camera naturally lives in a
very high-dimensional space (with the number of dimensions equals the
number of pixels), a space of n by n patches can be viewed as a subspace
of an n2-dimensional vector space. If n is small (in our case n = 3 or
5) this is computationally tractable. Second, it has been observed by
several authors ([5], [7]) that an understanding of the local statistics
provides a lot of information about the global statistical properties of
the image; this is commonly referred to as scaling of the natural image
statistics. Third, the results in [9] provide evidence that humans tend
to focus more on the scale-invariant features of an image, while in [11]
the authors report that humans look more in regions with high spatial
contrast when presented with a natural image scene.

This paper follows the topological approach initiated in [2] and con-
tinued in [1]. We use sub and superlevel sets of a certain set of functions
to cut out the subspace of linear and quadratic gradient patches that
also constitute the densest subspace inside the 3 by 3 patch space. We
also show that most of the results for 3 by 3 patches are valid in a 5 by
5 patch space as well.

0.1 Outline of the paper

This paper is organized as follows. In section 1 we give a brief theoretical
and computatational account of the algebraic topological methods that
we use. Section 2 is dedicated to explaining the details of the patch
space construction. In section 3 we present our computational methods.
In section 4 we report our main results. Section 5 contains a summary
and discussion of possible future directions of research. Most of the
computational details are given in the Appendix.

1 Computational algebraic topology

1.1 Classical algebraic topology

Loosely speaking, topology is the study of the global properties of spaces.
For example, one natural question to ask within a topological framework
is whether the space at hand is connected (any two points can be joined
by a path within the space), yet another question might be whether any
two paths between a fixed pair of points can be deformed into one another
keeping the endpoints fixed. The “algebraic” in algebraic topology arises
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when we give our initial space some robust structure, e.g. the structure
of a simplicial complex which we will discuss in more detail below or more
generally the structure of a cell complex. For a friendly introduction to
algebraic topology we refer the reader to [6].

Classical algebraic topology deals with spaces consisting of an infinite
set of points. Such a space can be defined by a set of equations or
descriptively, e.g. the space of all unit vectors in R

3. In our case, we
have spaces consisting of a finite collection of points, so standard methods
are not directly applicable. To deal with such situations, computational
algebraic topological methods were developed.

To enable algebraic methods we approximate our space of finitely
many points by a combinatorial (rigid) structure known as a simplicial
complex. Our main computational invariant for a space is its homology
groups, which have a particularly nice description within a simplicial
framework. Intuitively, homology measures the number of “holes” of
various dimensions a given space has. For example, one might say that
a circle has exactly one one-dimensional hole, a figure “8” has two and a
sphere has one two-dimensional hole. Indeed, this is exactly the informa-
tion homology groups contain: there is one generator in first homology
group of a circle, two in the first homology group of figure “8” and one
generator in the second homology group of a sphere. The number of
generators of the n-th homology group of a given space is called its n-th
Betti number.

The combinatorial nature of a simplicial complex allows one to com-
pute its homology groups numerically once a particular simplicial ap-
proximation of the space is chosen. The question arises as to how to
approximate a space of discrete points by a continuous object such as
simplicial complex. In the next section we introduce the concept of per-
sistent homology and explain how it helps to answer the above question.

1.2 Persistent homology

Before we introduce the notion of persistence we need to delve deeper
into the subject of simplicial complexes.

Simplicial complexes are finite lists of simplices. Geometrically, a
simplex can be described as follows. Given n + 1 points in R

m, an n-
simplex is a convex body bounded by the union of the (n − 1)-linear
subspaces of R

m defined by all possible collections of n points chosen
out of the original n + 1 points. For example, a 1-simplex is an inter-
val, a 2-simplex is a triangle, a 3-simplex is a tetrahedron and so on.
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Simplices in a simplicial complex overlap in a prescribed way, and the
linear algebraic methods used to compute homology operate on vector
spaces whose bases consist of collections of these simplices. One way
to implement this in practice is to take a space X ⊆ R

n, or rather a
finite set of points X sampled from X, together with a parameter ǫ, and
construct from it a simplicial complex, called the Vietoris-Rips complex,
denoted V R(X, ǫ). The complex will have X as its vertex set, and a
collection {x0, x1, . . . , xk} will determine a k-simplex in V R(X, ǫ) if and
only if d(xi, xj) ≤ ǫ for all 0 ≤ i, j ≤ k. Here d denotes the metric
(distance), which is chosen depending on a problem at hand. When ǫ
is very small, this still amounts to a discrete set of points, and when ǫ
is large, it is a single simplex of dimension #(X) − 1 (provided X has
more than one point). However, there is typically a middle range where
V R(X, ǫ) has homology groups isomorphic to those of X, and therefore
has Betti numbers equal to those of X. When the space is a Riemannian
manifold, for example, one can explicitly estimate a range of values of ǫ
for which this is the case. In our case, when we only have the finite sam-
ple and no a priori information about the underlying space X, making
such estimates is not possible. To remedy the situation H. Edelsbrunner
et al [4] have made the following observation. Given ǫ ≤ ǫ′ , there is
a natural inclusion of simplicial complexes V R(X, ǫ) →֒ V R(X, ǫ′), and
because of the functoriality property described above, one obtains a lin-
ear transformation Hk(V R(X, ǫ)) → Hk(V R(X, ǫ′)) for any k. What
Edelsbrunner et al observed was that in order to study the homology
of a given space using a point cloud sampled from it, one should keep
track of the entire system of vector spaces Hk(V R(X, ǫ)), together with
all the linear transformations described above. Such a system will be
called a persistence vector space, and it is shown in [14] that persistence
vector spaces admit a classification analogous to the classification result
for finite dimensional vector spaces, which asserts that two vector spaces
of the same dimension are isomorphic. In the case of persistence vector
spaces, it turns out that attached to each persistence vector space, there
is an invariant called a barcode which is just a finite collection of inter-
vals (perhaps infinite to the right), and that any two persistence vector
spaces with the same barcodes are isomorphic. Figure 1 gives an exam-
ple of a barcode for a figure “8”. Long intervals in a barcode represent
actual geometric structure of an underlying space from which the data is
sampled and shorter intervals are interpreted as noise. Of course, what
is long and what is short depends on the nature of the problem, but the
above statement is the guiding principle. Referring to figure 1 we see
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Figure 1: The barcode for the figure “8” space

that there are two long lines in one-dimensional homology and one long
line in 0-dimensional homology reflecting the fact that figure “8” has one
connected component and two one-dimensional holes.

2 Space of patches

Our main space M is a collection of 4 · 106 ‘3 by 3’ patches of high
contrast obtained from the collection of still images gathered by H. van
Hateren and A. van der Schaaf ([8]). M is a subset of a larger set M̃,
provided to us by K. Pedersen. The size of M̃ is about 8 · 106. Below is
a series of steps performed to obtain a set of high-contrast patches from
a particular image. (See [10] for more details).

1. Select an image from the still image collection.

2. Extract at random 5000 3 by 3 patches from the image. Regard
each patch as a vector in 9-dimensional space.

3. Next, for each patch do the following.

(a) Compute the logarithm of intensity at each pixel.

(b) Subtract an average of all coordinates from each coordinate.
This produces a new 9-vector.
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(c) For this vector of logarithms compute the contrast or “D-
norm” of the vector. The D-norm of a vector x is defined
as

√
xT Dx, where D is a certain positive definite symmetric

9 × 9 matrix.

(d) Keep this patch if its D-norm is among the top 20 percent of
all patches taken from the image.

4. Normalize each of the selected vectors by dividing by their respec-
tive D-norms. This places them on the surface of a 7-dimensional
ellipsoid.

5. Perform a change of coordinates so that the resulting set lies on
the actual 7-dimensional sphere in R

8.

The space M̃ was obtained by applying the above procedure to a subset
of images from the still image collection.

3 Methods

In [1] it was shown that the sublevel sets of a density function defined on
M have interesting and non-trivial topologies for sufficiently high density
thresholds. The density function Fk used in that paper was defined as the
inverse of a distance to the k-th nearest neighbor. ([13]). The particular
value of a parameter k does not matter as long as it is not too small to
be affected by sampling noise.

To summarize the results of [1]: it was found that as the density
threshold f decreases, the topology of the sublevel sets Fk ≥ f changes
from a circle (linear intensity gradients) to a 3-circle space (linear gradi-
ents plus quadratic gradients in vertical and horizontal directions) and
finally becomes that of the Klein bottle (all linear and quadratic gradi-
ent patches) minus a certain measure 0 set D. We refer the reader to
[1] for in-depth explanation of why the sublevel sets have this particular
topology. All patches in D are of the same nature, namely, they have
diagonal pure quadratic gradients. Their relatively low density is partly
due to the choice of patch shape as a square. This choice is influenced by
technology - camera pixels form a grid with vertical and horizontal sides.
It is also partly due to nature’s preference for vertical and horizontal as
opposed to intermediate directions.

We would like to obtain a topological filtration of M similar to that
of [1] which wouldn’t suffer from technonology biases . We achieve such
a filtration by using 3 naturally defined functions (which we call G, H
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and R) on M. Let us also fix the notation g, h and r to denote the
corresponding threshold values for each of these functions.

Each point of M, i.e. each 3 by 3 patch can be thought of as lying in
the xy-plane with each of the nine pixels having coordinates (x0, y0), x0 ∈
{−1, 0, 1}, y0 ∈ {−1, 0, 1}. We denote the grid made by these nine points
in a plane by Z. Let us also denote by I an intensity function on p. Note
that given any function of two variables f (in particular, a polynomial),
we can obtain a 3 by 3 patch by evaluating f on the 9 points of Z. The
polynomial functions which we described in [1] proved to be especially
useful in explaining the topological results in [1] and we will turn to them
later in this paper.

Let us now describe the construction of functions G, H and R. Most
of the computational details of constructions presented in this section
are given in the Appendix.

To define a function G on M we first compute the covariance matrix
M of partial derivatives in x and y of intensity function I for a patch p

M =

(

∫

∂I
∂x

· ∂I
∂x

∫

∂I
∂x

· ∂I
∂y

∫

∂I
∂x

· ∂I
∂y

∫

∂I
∂y

· ∂I
∂y

)

.

Next, G(p) is defined as an absolute value of the difference between
eigenvalues of M , namely,

G(p) = λmax − λmin.

The function G is designed to measure the directionality of a patch and
thus we expect high-contrast linear gradient patches to have a high value
of G.

The second function H is defined in two steps as well. First, we
compute a hessian HI of I at the central pixel of a patch, H(p) is an
absolute value of the largest eigenvalue of HI , i.e.

H(p) = max(γ1, γ2).

The function H is designed to differentiate between quadratic and linear
gradient patches. Patches whose gradient is close to being linear should
have a very small value of H.

Let S be the following basis consisting of linear and quadratic func-
tions,

S = {1, x, y, xy, x2 − y2, x2 + y2}.
We orthonormalize S to obtain a new basis, still denoted by S. The
definition of the function R uses a representation of a patch in S. More
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precisely, we compute coefficients of p in S using the standard scalar
product and let ps =

∑

fi∈S ci ·fi, where ci are the computed coefficients
and fi ∈ S. Then we define

R(p) = ||p − ps||.

The main point behind defining the function R in this way is that both
linear and quadratic gradient patches should be approximated well using
just the functions from S.

We select a subspace Kg,h,r, which depends on the choice of the
threshold values for g, h and r using the three defined functions and
applying the following formula to M

Kg,h,r = {p : R(p) ≤ r ∧ (G(p) ≥ g ∨ H(p) ≥ h)}.

Thus, we would like to cut out the set of patches which are well ap-
proximated by the set of functions in the basis B and either have strong
directionality bias (linear gradient patches) or have a large eigenvalue
of a Hessian at the central pixel (quadratic gradient patches). It is the
spaces of the form Kg,h,r which we use in our subsequent topological
analysis. In the next section we will see that in fact only the threshold
for the function H needs to be changed to produce the family of topolo-
gies as in [1], the other two thresholds are kept constant throughout the
procedure.

The spaces Kg,h,r are typically very large (recall that the size of the
whole space M is 4 · 106). Therefore, we need a way of reducing their
size without distorting their topology. To accomplish this task, we again
turn to functions. Roughly speaking, the idea is to replace points of
Kg,h,r by the clusters of preimages of intervals [a, b] under suitably chosen
functions on Kg,h,r. As an illustrative example, consider a simple space
such as circle S1 defined in the xy-plane in the usual way by the equation
x2 + y2 = 1 and let f : R

2 → R be defined as projection onto the x-axis,
i.e. f(x, y) = x. We break the range of f into a finite set of intervals

Rf = {[x1, x2], [x2, x3], . . . , [xn−1, xn]}.

Next, we cluster each set f−1[xi, xj ] and replace each of the clusters with
its mean point. Thus, the total number of points equals the total number
of clusters across all intervals [xi, xj]. If there is more than one function
used (as in all of our cases) producing a map of the form X → R

n, we
break up the range into n-parallelepipeds and follow essentially the same
procedure as in the 1-dimensional case.
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We apply this procedure to spaces Kg,h,r using a pair of functions.
One is the function G defined earlier, the other is a function Θ also de-
fined on all of M. Recall that the symmetric matrix M defined above
can always be brought to a diagonal form by an orthogonal basis trans-
formation. Such a transformation in R

2 is completely described by a
rotation by a fixed angle, which we denote by θ. The function Θ is
defined as a function of this angle, more precisely

Θ(p) = sin2(2θ).

Following our reduction method for Kg,h,r we cluster the preimages of
rectangles in R

2 under the pair of functions (G(p),Θ(p)). The last step is
to replace the points of Kg,h,r with the mean points of the corresponding
clusters. Let us denote the reduced space by K̃g,h,r. The choices of
functions and a particular decomposition of their ranges into intervals
for the clustering algoritm were dictated by the results obtained in the
controlled case (when the choices were applied to the ideal Klein bottle
space as constructed in [1] using a polynomial model).

In the next section we describe the results obtained by feeding the
family of spaces K̃g,h,r into our topological software PLEX and comput-
ing their Z2 homology groups in dimensions 0, 1 and 2.

4 Experimental Results

We describe below the topology of K̃g,h,r for various values of threshold-
ing parameters g, h and r. Let us also fix the notation for a threshold
triple as (g, h, r).

At the level (g, h, r) = (1.5,∞, 0.02) we recover the circle of lin-
ear gradients S1 (see figure 3). The barcode shows one line in the 0-
dimensional homology and one in the 1-dimensional homology. In terms
of 2-variable polynomial functions the space S1 can be given as a set
of linear polynomials of the form {ax + by} with (a, b) ∈ S1 since our
patches are contrast-normalised.

Lowering the threshold h on H to (g, h, r) = (1.5, 0.88, 0.02) we re-
cover the 3-circle model S3 (figure 4) described in [2] and in more detail
in [1]. This space consists of a pair of secondary circles (vertical and
horizontal quadratic gradients) each of which intersects the primary cir-
cle (linear gradients) in exactly two points. The secondary circles do
not intersect each other. The figure shows that the first Betti num-
ber is 5 in this case, which is consistent with this model (as shown in
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Figure 2: 3 by 3 patches parametrized by the Klein bottle

[1]). The polynomial description for C3 consists of the set of the form
c(ax + by)2 + d(ax + by) with either (c, d) = (0, 1), (a, b) = (1, 0) or
(a, b) = (0, 1) giving the linear gradients circle, the vertical quadratic
gradients circle and horizontal quadratic gradients circle respectively.

Finally, lowering h further to (g, h, r) = (1.5, 0.8, 0.02) we obtain
the Klein bottle’s homology (figure 5). At this filtration level the space
includes the 3-circle space and also quadratic gradients in all of the in-
termediate directions. The polynomial model for this space is given by
all polynomials of the form c(ax+ by)2 + d(ax+ by) with (a, b) ∈ S1 and
(c, d) ∈ S1. It is proved in [1] that the space of polynomials of this form
is indeed homeomorphic to the Klein bottle.

Figure 2 shows a space of patches parametrized by the Klein bot-
tle. Here we use the standard representation of the Klein bottle with
opposite horizontal edges identified without orientation reversal and op-
posite vertical edges identified with orientation reversal. The circle of
linear gradients is colored red (note that due to the identification of ver-
tical edges it is one connected component), and vertical and horizontal
quadratic gradient patches are colored green and black respectively.

We repeated the same analysis using the same set of functions for
the space of 5 by 5 patches. In this case it is possible to recover a 3-
circle model and the Klein bottle but not the linear gradients circle. The
results for the former two cases are presented on Figure 6 and Figure 7.
At the level (g, h, r) = (1.35,∞, 0.15) we obtain a 3-circle model, and at
(g, h, r) = (1.55,∞, 0.15), the Klein bottle.
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Figure 3: PLEX results for K̃1.5,∞,0.02
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Figure 4: PLEX results for K̃1.5,0.88,0.02
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Figure 5: PLEX results for K̃1.5,0.8,0.02
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Figure 6: PLEX results for K̃N=5

1.35,∞,0.15
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Figure 7: PLEX results for K̃N=5

1.55,∞,0.15

5 Summary

We have shown that the space of high-contrast 3 by 3 patches with
linear and quadratic gradients has a topological filtration whose second
skeleton is topologically equivalent to a 2-manifold, the Klein bottle. We
confirmed our findings by applying the same methods to the space of 5
by 5 patches. Together with the result in [1] that patches with linear and
quadratic gradients have a high density in the space of all high-contrast
patches, our results suggest that an efficient encoding of a large portion
of a natural image is possible. Namely, instead of using an “ad hoc”
dictionary for approximating high-conrast patches one can build such a
dictionary in a systematic way by generating a uniform set samples from
the ideal Klein bottle provided by the polynomial model.

Appendix

Here we give details of various computational procedures described in
the main body of the paper.

To define a function G(p) we need a discrete version of the gradient
in x and y directions. To write down the formulas let us first fix some
notation. For a patch p of size n by n we let p(i, j) be the pixel whose x-
coordinate is i and whose y-coordinate is j. We define a discrete version
of partial derivatives with respect to x (the formulas for partials with
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respect to y are similar) as

px(i, j) = p(i + 1, j) − p(i, j), if i = −⌊n/2⌋ (1)

px(i, j) = (p(i + 1, j) − p(i − 1, j))/2, if − ⌊n/2⌋ < i < ⌊n/2⌋ (2)

px(i, j) = p(i, j) − p(i − 1, j), if i = ⌊n/2⌋ (3)

Representing the matrix M (see section 3) in the form

(

A B
B C

)

with entries (in our discrete situation) given by formulas

A =
∑

i

∑

j

px · px, B =
∑

i

∑

j

px · py, C =
∑

i

∑

j

py · py,

we are ready to give explicit formulas for G(p) and Θ(p), namely,

G(p) = (A − C)2 + 4B2

Θ(p) =
4B2

(A − C)2 + 4B2
.

Computing the partial derivates of px and py using the formulas
(1),(2) and (3) above we obtain a Hessian HI(p). To compute the value
of H on p we find the maximum of the absolute values of the eigenvalues
of HI at the central pixel. An explicit formula is given by

H(p) = max(|pxx + pyy +
√

(pxx + pyy)2 − 4(pxxpyy − pxy)2|,

|pxx + pyy −
√

(pxx + pyy)2 − 4(pxxpyy − pxy)2|).

The definition of R(p) requires a discrete approximation of continu-
ous basis functions of S. In our representation of a patch as a grid Z
we achieve this (quite naturally) by evaluating the corresponding basis
functions on each of the points of the grid. Once we obtain a discrete
model for S we orthonormalize it using the Gram-Schmidt procedure.
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